

"Freedom to Live Independently, Green Housing for Tomorrow"

Our Team

Operation TRIAGE

FACULTY ADVISORS

Dr. Stuart Baur Ph.D. Civil Engineering

Daryl Gichui Environmental Engineering

Alyssa Marshall Architectural Engineering

UNDERGRADUATE STUDENT TEAM

Troy Savaiano
Electrical
Engineering

Aditya Prabhu Civil Engineering

Melorin Azimzadeh Civil & Architectural Engineering

Dr. Heath Pickerill
Ph.D. Human
Environmental Sciences

Thomas Bleakney
Business and
Management

Auburn Hughes Engineering Management

Stephen Simmons Civil & Architectural Engineering

lan James Electrical Engineering

Erika McDaniel Geological Engineering

Design Goals

Accessibility

Ensuring all spaces in the home are accessible for people with mobility-related disabilities

Affordability

Creating a cost-effective home for an occupant with a limited income

Net-Zero

Designing a home that generates energy from renewable sources to compensate for its energy consumption

A lower-limb amputee veteran between 25 and 40 years old Has a roommate or is developing a family

Student pursuing a degree at Missouri S&T or a University Staff Member

FLIGHT Home Design Concept

<u>F</u>reedom to <u>L</u>ive <u>I</u>ndependently, <u>G</u>reen <u>H</u>ousing for <u>T</u>omorrow

Floor Plan

- Open floor plan
- Wheelchair-accessible in all spaces
- Polished concrete floor, consistent throughout home
- Sliding doors for easy access
- Appliances on lower elevations
- Can be expanded to accommodate growing family
- Strong use of daylighting to maximize sunlight penetration

Codes & Standards

2010 ADA Standards

2020 International Code Council

Department of Energy (DOE) Zero Energy Ready Home Program

2018 International Residential
Code & 2017 National
Electrical Code

ASHRAE Standard 62.2-2019

2021 Uniform Plumbing Code

Magnesium Oxide Boards

- Mold, fire, and water resistant
- Contain no volatile organic compounds (VOCs)
- R-Value of 43 or higher

Denim Insulation

- 85% recycled content
- Improve indoor air quality
- Superior sound absorption
- R-Value of 19

Seamless Steel Siding

- 100% recyclable
- Withstands up to 235 mph winds
- Low maintenance
- Resistant to extreme temperature fluctuations
- Fire and moisture resistant

Rib Steel Roof Panel

- Fading, corrosion, chipping and chalking-resistant coating
- Listed with ENERGY STAR
- Reflects sunlight before it is absorbed as heat
- Maintenance-free, resistant to termites, and repel moisture

Plumbing

- Hybrid Heat pump water heater
- Centralized water heater

Water Conservation

1.2 GPM

1.75 GPM

Dual Flush

Weather Tracking

1.5 GPM

Auto-Sensing Technology

Heating and Air Conditioning

- Ductless mini-split system
- Indoor units placed based on convenience

Ventilation

- Heat Recovery Ventilation reduce heating/cooling loads and provide fresh air
- MERV 13 filters

Smart Technology

Tesla Powerwall 2

Lighting Controls

Kumo Thermostat

Renewable System

- **Production-** 10 kWh Array
- **Rectification-** 12 kWh Inverter
- **Storage-** 13.5 kWh Battery
- Location- 5.17 kWh/m²/day

Energy Analysis Report

Estimated Annual Energy Consumption*			
	Rated Home Calculated Energy Use (MBtu)	Rated Home Cost (\$/yr)	
Heating	18.6	\$721	
Cooling	1.5	\$59	
Water Heating	1.8	\$70	
Lights & Appliances	22.2	\$858	
Photovoltaics	-45.7	\$0	
Total	44.1	\$0	
*Based on standard operating conditions	1		

ERI with PV:-2

ERI without PV:53

Annual Estimates			
Electric (kWh):12,931.2	CO2 Emissions (Tons):-0.4		
Natural Gas (Therms):0.0	Energy Savings (\$)**:N/A		
**Based on the 2015 IECC R-406 Reference design home			

Estimated Construction Budget

Building	\$143,400
Electrical	\$34,760
Mechanical	\$9,510
Plumbing	\$2,980
Contingency	\$8,940
Cost of Labor	\$71,530
Total	\$271,120
Cost Per Square Foot	\$91

*Typical grant from Veteran's Affairs for a veteran with lower limb amputation: \$80,000

Conclusion

Accessibility

 All spaces in the home are accessible for people with different abilities

Affordability

 A cost-effective home for an occupant with a limited income

Positive Energy Home

 A home that produces more energy than it consumes

Sustainability

 Made with locally sourced materials which will ultimately reduce emissions that impact the environment

FLICHT Home

